Electrochemical Determination of Uric Acid in Urine by Using Zeolite Imidazolate Framework-11 Modified Electrode

نویسندگان

چکیده

In the present article, synthesis of zeolite imidazole framework-11 (ZIF-11) by ultrasonic-assisted hydrothermal process and its application as an electrode modifier for electrochemical determination uric acid in urine are demonstrated. The obtained materials were characterized X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms. It was found that ZIF-11 with rhombic dodecahedron topology high surface area (1066 m2.g-1) synthesized a certain temperature around 25–40°C, other crystalline phases zinc benzimidazolate deferring from phase less 25°C or higher than 40°C. is stable pH range 6-10. modification glassy carbon performed ZIF-67 using drop-casting procedure. modified employed to study behavior (UA). UA oxidation catalyzed this aqueous buffer solution (pH 7) decrease 70 mV overpotential compared electrode. With differential pulse–anodic stripping voltammetry (DP-ASV) method, current versus concentration shows good linearity 20–540?M ( R = 0.998 ) detection limit 0.48 ?M id="M2"> S / N 3 ). applied content samples, satisfied results obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective Electrochemical Nanosensor based on Modified Carbon Paste Electrode for Determination of NADH in the presence of Uric Acid

The electrochemical properties of a modified carbon paste electrode with the synthesized compound of 2,2'-[1,7–heptanediylbis(nitrilomethylidene)]-bis(4-hydroxyphenol) (DHBH) and graphite nanoparticle (GN) were studied by cyclic voltammetry (CV), chronoamperometry and differential pulse voltammetry (DPV) methods. The proposed electrode shows excellent electrocatalytic activity towards the oxida...

متن کامل

Development of a PrGO-Modified Electrode for Uric Acid Determination in the Presence of Ascorbic Acid by an Electrochemical Technique

An attractive electrochemical sensor of poly(3,4-ethylenedioxythiophene)/reduced graphene oxide electrode (PrGO) was developed for an electrochemical technique for uric acid (UA) detection in the presence of ascorbic acid (AA). PrGO composite film showed an improved electrocatalytic activity towards UA oxidation in pH 6.0 (0.1 M PBS). The PrGO composite exhibited a high current signal and low c...

متن کامل

A Sensitive Electrochemical Sensor for Determination of Imipramine in Urine Sample Using Carbon Ionic Liquid Electrode Modified With Montomorillonite Nanoclay

We used an effective electrochemical sensor for the determination of imipramine at pH 7.2 using a carbon nanocomposite electrode. The electrode has been designed by incorporation of montmorillonite nanoclay into the carbon ionic liquid electrode. The high sensitivity of 1.714 μA (μM)-1, two linear calibration ranges of 0.1–2 μM and 2-40 μM, and detection limit of 19 nM were achieved. The relati...

متن کامل

Simultaneous Voltammetric Determination of Ascorbic Acid and Uric Acid Using a Modified Multiwalled Carbon Nanotube Paste Electrode

This paper describes the development, electrochemical characterization and utilization of novel modified molybdenum (VI) complex-carbon nanotube paste electrode for the electrocatalytic determination of ascorbic acid (AA). The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV) that showed a shift of the oxidation peak potential of AA about 235 mV ...

متن کامل

Simultaneous Determination of Ascorbic Acid, Uric Acid and Tryptophan by Novel Carbon Nanotube Paste Electrode

In the present paper, electrochemical methods were used to investigate the behavior of ascorbic acid at a carbon paste electrode modified with 2,2'-((1E)-(1,2 phenylenebis(azanylylidene)) bis(methanylylidene))bis(benzene-1,4-diol) (PBD) and oxidized multiwall carbon nanotubes. The modified carbon paste electrode showed high electrocatalytic activity toward ascorbic acid; the current was enhance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nanomaterials

سال: 2021

ISSN: ['1687-4110', '1687-4129']

DOI: https://doi.org/10.1155/2021/9914062